MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images

نویسندگان

  • Mingxiong Huang
  • Charles W. Huang
  • Ashley Robb
  • Annemarie Angeles
  • Sharon L. Nichols
  • Dewleen G. Baker
  • Tao Song
  • Deborah L. Harrington
  • Rebecca J. Theilmann
  • Ramesh Srinivasan
  • David Heister
  • Mithun Diwakar
  • José M. Cañive
  • J. Christopher Edgar
  • Yu-Han Chen
  • Zhengwei Ji
  • Max Shen
  • Fady El-Gabalawy
  • Michael Levy
  • Robert N. McLay
  • Jennifer Webb-Murphy
  • Thomas T. Liu
  • Angela Drake
  • Roland R. Lee
چکیده

The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Vector-based spatial-temporal minimum L1-norm solution for MEG.

Minimum L1-norm solutions have been used by many investigators to analyze MEG responses because they provide high spatial resolution images. However, conventional minimum L1-norm approaches suffer from instability in spatial construction, and poor smoothness of the reconstructed source time-courses. Activity commonly "jumps" from one grid point to (usually) the neighboring grid points. Equivale...

متن کامل

Eigenspace Minimum L1-Norm Beamformer Reconstruction of Functional Magnetic Resonance Inverse Imaging of Visuomotor Processing

INTRODUCTION Dynamic magnetic resonance (MR) inverse imaging (InI) can improve the temporal resolution of blood oxygen level dependent (BOLD) contrasts fMRI to the order of milliseconds [1]. In InI, the spatial resolution and the source localization accuracy both critically rely on the signal-to-noise ratio (SNR) of the measurements [1]. The localization of the functional activity in ill-posed ...

متن کامل

Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system shoul...

متن کامل

Design of High Gain, High Reverse Isolation and High Input Matched Narrowband LNA for GPS L1 Band Applications Using 0.18µm Technology

Design of Global Positioning System (GPS) receiver with a low noise amplifier (LNA) in the front end remains a major design requirement for the success of modern day navigation and communication system. Any LNA is expected to meet the requirements like its ability to add the least amount of noise while providing sufficient gain, perfect input and output matching, and high linearity. However, mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2014